viernes, 9 de diciembre de 2016

Agentes Mutagénicos
En biologia, un mutageno (latin) "origen del cambio") es un agente físico, químico o biológico que altera o cambia la información genética (usualmente ADN) de organismo y ello incrementa la frecuencia de mutaciones por encima del nivel natural. Cuando numerosas mutaciones causan el cancer adquieren la denominación de carcinogenos. No todas las mutaciones son causadas por mutágenos. Hay "mutaciones espontáneas", llamadas así debido a errores en la reaccion  y la recombinacion del ADN.




Hay que destacar que, gracias a las mutaciones, actualmente existe gran 
biodiversidad
. Si no fuera por las variaciones que producen las alteraciones en el ADN, no habría variabilidad fenotipica , ni adaptacion a los cambios ambientales. Por lo tanto, las mutaciones tienen su parte positiva, ya que todo proceso biológico tiene sus ventajas e inconvenientes. Aunque también hay que decir que el cáncer es considerado como el producto final de uno o más fenómenos de mutación.
goog_997388866En biología, un mutágeno es un agente físico, químico o biológico que altera o cambia la información genética (usualmente ADN) de un organismo y ello incrementa la frecuencia de mutaciones por encima del nivel natural. Cuando numerosas mutaciones causan el cáncer adquieren la denominación de carcinógenos. No todas las mutaciones son causadas por mutágenos. Hay "mutaciones espontáneas", llamadas así debido a errores en la reparación y la recombinación del ADN.
v  Tipos de Agentes Mutagénicos

*      Mutágenos químicos: son compuestos químicos capaces de alterar las estructuras del ADN de forma brusca, como por ejemplo el ácido nitroso (agente desaminizante), brominas y algunos de sus compuestos.

*      Mutágenos físicos: son radiaciones que pueden alterar la secuencia y estructura del ADN. Son ejemplos la radiación ultravioleta que origina dímeros de pirimidina (generalmente de timina), y la radiación gamma y la alfa que son ionizantes. También se considerar agentes físicos los ultrasonidos,con 400.000 vibraciones por segundo,que han inducido mutaciones en Drosophila y en algunas plantas superiores, y centrifugación, que también producen variaciones cromosómicas estructurales.

Aquí se incluyen las radiaciones atómicas, Rayos X producen esterilidad en plantas, animales y hombre. También afectan a los tejidos como huesos, nervios, músculos, hígado, riñón, etc. Además la radiación es un proceso físico mediante el cual la enegía viaja por el espacio. Hay 2 formas principales de esta energía:
·         Electromagnética: se describe como ondas de energía eléctrica. Por ejemplo: Rayos gamma, Rayos X, Radiación Ultravioleta.

·         Resultado de imagen para mutación·         Cospuscular: está formado por partículas atómicas y subatómicas que se mueven a grandes velocidades y provocan daños cuando chocan con otras partículas incluyendo las moléculas biológicas. Por ejemplo: partículas alfa y pastículas beta.

*      Mutágenos biológicos: son aquellos organismos “vivos” que pueden alterar las secuencias del material genético de su hospedador; como por ejemplo; virus, bacterias y hongos. Son ejemplo los transposones (fragmentos autónomos de ADN).
goog_997388925Las posibles fuentes de mutágenos biológicos pueden ser todos los preparados de naturaleza biológica utilizados en medicina profiláctica o terapeutica tales como vacunas, antitoxinas,sangre, suero y antígenos. Los mutágenos biológicos potenciales pueden ser microorganismos, especialmente virus, y algunos agentes químicos. En el caso de los virus se ha demostrado que pueden producir anomalías cromosómicas, desde la simple rotura, a la pulverización de los cromosomas, por ello la vacunación con virus vivos puede implicar un riesgo potencial. Las moléculas de ADN recombinante tienen un riesgo potencial debido principalmente a que muchos tipos de ADN de células animales contienen secuencias comunes a virus tumorales, el añadir ADN de origen animal a estos nuevos sistemas de replicación o clonado del ADN podría significar la proliferación incontrolada de una información genética cancerígena.




©       EFECTO BIOLÓGICO DE LA RADIACIÓN
Los efectos biológicos de la radiación consisten en alteraciones a diversos niveles de organización, como son las moléculas, los orgánulos y las células.
Radiación ionizante
Reacciones oxidativas Son radiaciones con pequeña longitud de onda y son por tanto más energéticas lo que conlleva que sean más "penetrantes". Es el principal mecanismo por el que la radiaciones interaccionan con la materia orgánica (y por lo tanto con el ADN)
En el proceso de penetración esta radiación de alta energía produce iones porque al chocar con los átomos hace que éstos liberen electrones y estos electrones a su vez chocan con otros átomos liberándose nuevos electrones. El cambio del número de electrones transforma un átomo en un estado reactivo iónico. Como el 80% de la célula es agua, la radiación ionizante suele generar radicales libres, en forma de hidrógeno o de radicales hidroxilo (OH) ionizados, derivados ambos del agua.
Estos radicales reaccionan con otras moléculas de su misma clase para formar peróxido de hidrógeno (H2O2) cuyas moléculas tienen gran poder de reacción y puede destruir la estructura de las proteínas y del ADN. La lesión producida por la radiación induce trastornos del funcionamiento de los procesos metabólicos celulares llevándola a la muerte.
Daños cromosómicos: Dependiendo del momento de la división en el que se irradien las células, una aberración cromosómica puede incluir una o dos cromátidas. Ejemplo: a) la irradiación en interface, antes de que comience la síntesis de DNA, normalmente da lugar a roturas que más tarde aparecen como si se hubiesen producido cuando los cromosomas todavía no se hubiesen replicado (roturas cromosómicas). b) las roturas producidas en el período de interfase después de comenzar la síntesis del DNA normalmente aparecen separadamente en cada una de las dos cromátidas de un cromosoma (rotura de cromáticas)
Se ha sugerido que la irradiación, en lugar de roturas físicas únicas, ocasiona “lesiones” cromosómicas que luego estimulan intercambios entre partes del mismo cromosoma o de diferentes cromosomas, dando lugar, a su vez, a deleciones, translocaciones y otras aberraciones cromosómicas. Así pues, las cromátidas de un cromosoma irradiado pueden solaparse en un punto donde coinciden dos lesiones, dando lugar a intercambios completos o incompletos. Si el intercambio es completo, no se observa un daño morfológico aparente ya que hay  una transferencia simétrica de material cromosómico entre las cromátidas hermanas. Tales intercambios pueden detectarse mediante técnicas de tinción diferencial. Los intercambios incompletos dan lugar a la pérdida de material en una o en las dos cromátidas. De igual manera, los intercambios inducidos por rayos X pueden dar lugar a inversiones o a translocaciones, aunque en este último caso debería ocurrir entre cromátidas no homólogas. La radiación puede producir aneuploidía por pérdida de cromosomas.
©       RADIACION NO IONIZANTE
Radiación ultravioleta La radiación ultravioleta puede dar lugar también a aberraciones cromosómicas, su efecto es considerablemente más suave que el de los rayos X debido a que son mucho menos penetrantes y no dan lugar a una trayectoria de iones y por consiguiente ha sido utilizada principalmente para estudiar mutaciones puntuales. Teniendo una longitud de onda demasiado larga como para producir iones, la radiación UV parece actuar afectando tan solo a aquellos compuestos que la absorben directamente. En la célula, la absorción directa de los rayos UV está principalmente confinada a compuestos orgánicos con estructuras en forma de anillo, tales como los nucleótidos, siendo citosina y timina las bases que absorben especialmente las longitudes de onda UV. El mecanismo por el que se produce la mutación es el siguiente: la radiación UV provoca la inserción de una molécula de agua en el doble enlace C-C. También se rompen los dobles enlaces de timina por lo que las bases de timina pueden conectarse para formar un dímero. Esta íntima relación entre la radiación UV y los componentes del DNA también aparece al comparar el espectro de absorción de la radiación UV del DNA y las tasas de mutación ocasionadas por las longitudes de onda UV. Estudios in vitro indican que la formación de dímeros de timina puede ser el principal efecto mutagénico producido por los rayos UV. Tales dímeros distorsionan la hélice de DNA e impiden su replicación, como resultado la célula no se divide y puede morir.





También es posible una acción indirecta de la radiación UV porque puede actuar sobre varios precursores del DNA y sobre enzimas que a su vez afectan la mutación. Este proceso puede evitarse por foto reactivación, es decir, exponiendo las células a radiaciones con longitudes de onda del espectro azul.
EFECTOS DE LAS MUTUACIONES 
Los cambios en una la secuencias de un ácido nucleico debido a una mutación contempla la sustitución de nucleótidos  pares-base e inserciones u omisiones de uno o más nucleótidos dentro de la secuencia de ADN. Aunque muchas de estas mutaciones sean mortales o causen una enfermedad grave, algunas solo tienen efectos secundarios, como los cambios que ocasionan en la sucesión de proteínas codificadas sin significancia alguna. Muchas mutaciones no causan ningún efecto visible, ya sea porque ocurren en los entrones o porque ellos no cambian la sucesión de aminoácidos debido a la redundancia de codones
ENFERMEDADES 
·         Xeroderma pigmentosum: variedad de procesos hereditarios que se caracteriza por gran sensibilidad a la luz solar, los pacientes tienen pigmentaciones cutáneas y formación de cánceres cutáneos. Los individuos afectados por este proceso no son capaces de reparar normalmente los daños causados al ADN por la luz ultravioleta.
Síndrome de Cockayne: proceso autosómico rara caracterizado por sensibilidad a la luz, retraso mental y muerte temprana.
Anemia de Fanconi: proceso autosómico rara caracterizado por disminución de las células sanguíneas circulantes y anomalías cromosómicas. Los individuos son sensibles a los rayos X y a otras radiaciones ionizantes. La reparación del ADN es defectuosa.

Síndrome de Bloom: proceso autosómica recesivo caracterizado por enanismo, deterioro de la inmunidad y sensibilidad a la luz solar. La fragilidad y translocación de los cromosomas indican una reparación defectuosa del ADN.
ALUMNA: Angelica Paola Siles Montes 

No hay comentarios.: